

<Project Name>
Test Plan

Version <1.0>

[Note: The following template is provided for use with the Rational Unified Process. Text enclosed in square
brackets and displayed in blue italics (style=InfoBlue) is included to provide guidance to the author and
should be deleted before publishing the document. A paragraph entered following this style will automatically
be set to normal (style=Body Text).]

[To customize automatic fields in Microsoft Word (which display a gray background when selected), select
File>Properties and replace the Title, Subject and Company fields with the appropriate information for this
document. After closing the dialog, automatic fields may be updated throughout the document by selecting
Edit>Select All (or Ctrl-A) and pressing F9, or simply click on the field and press F9. This must be done
separately for Headers and Footers. Alt-F9 will toggle between displaying the field names and the field
contents. See Word help for more information on working with fields.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 2

Revision History
Date Version Description Author

<dd/mmm/yy> <x.x> <details> <name>

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 3

Table of Contents
1. Introduction 4

1.1 Purpose 4
1.2 Background 4
1.3 Scope 4
1.4 Project Identification 5

2. Requirements for Test 6

3. Test Strategy 7
3.1 Testing Types 7

3.1.1 Data and Database Integrity Testing 7
3.1.2 Function Testing 7
3.1.3 Business Cycle Testing 9
3.1.4 User Interface Testing 10
3.1.5 Performance Profiling 11
3.1.6 Load Testing 13
3.1.7 Stress Testing 14
3.1.8 Volume Testing 15
3.1.9 Security and Access Control Testing 16
3.1.10 Failover and Recovery Testing 17
3.1.11 Configuration Testing 19
3.1.12 Installation Testing 20

3.2 Tools 21

4. Resources 22
4.1 Workers 22
4.2 System 24

5. Project Milestones 25

6. Deliverables 26
6.1 Test Model 26
6.2 Test Logs 26
6.3 Defect Reports 26

7. Appendix A: Project Tasks 27

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 4

Test Plan
1. Introduction

1.1 Purpose
This Test Plan document for the <Project Name> supports the following objectives:

• [Identify existing project information and the software components that should be tested.

• List the recommended Requirements for Test (high level).

• Recommend and describe the testing strategies to be employed.

• Identify the required resources and provide an estimate of the test efforts.

• List the deliverable elements of the test project]

1.2 Background
[Enter a brief description of the target-of-test (components, application, system, etc.) and its goals. Include
information such as major functions and features, its architecture, and a brief history of the project. This
section should only be about three to five paragraphs.]

1.3 Scope
[Describe the stages of testing⎯for example, Unit, Integration, or System⎯and the types of testing that will
be addressed by this plan, such as Function or Performance.

Provide a brief list of the target-of-test’s features and functions that will or will not be tested.

List any assumptions made during the development of this document that may impact the design, development
or implementation of testing.

List any risks or contingencies that may affect the design, development or implementation of testing.

List any constraints that may affect the design, development or implementation of testing]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 5

1.4 Project Identification
The table below identifies the documentation and availability used for developing the test plan:

[Note: Delete or add items as appropriate.]

Document
(and version / date)

Created or
Available

Received or
Reviewed

Author or
Resource

Notes

Requirements Specification Yes No Yes No

Functional Specification Yes No Yes No

Use-Case Reports Yes No Yes No

Project Plan Yes No Yes No

Design Specifications Yes No Yes No

Prototype Yes No Yes No

User’s Manuals Yes No Yes No

Business Model or Flow Yes No Yes No

Data Model or Flow Yes No Yes No

Business Functions and Rules Yes No Yes No

Project or Business Risk
Assessment

 Yes No Yes No

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 6

2. Requirements for Test
The listing below identifies those items⎯use cases, functional requirements, and non-functional
requirements⎯that have been identified as targets for testing. This list represents what will be tested.

[Enter a high level list of the major test requirements.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 7

3. Test Strategy
[The Test Strategy presents the recommended approach to the testing of the target-of-test. The previous
section, Requirements for Test, described what will be tested⎯this describes how the target-of-test will be
tested.

For each type of test, provide a description of the test and why it is being implemented and executed.

If a type of test will not be implemented and executed, indicate this in a sentence stating the test will not be
implemented or executed and stating the justification, such as “This test will not be implemented or executed.
This test is not appropriate.”

The main considerations for the test strategy are the techniques to be used and the criterion for knowing when
the testing is completed.

In addition to the considerations provided for each test below, testing should only be executed using known,
controlled databases in secured environments.]

3.1 Testing Types

3.1.1 Data and Database Integrity Testing
[The databases and the database processes should be tested as a subsystem within the <Project Name>. These
subsystems should be tested without the target-of-test’s User Interface as the interface to the data. Additional
research into the DataBase Management System (DBMS) needs to be performed to identify the tools and
techniques that may exist to support the testing identified below.]

Test Objective: [Ensure database access methods and processes function properly and
without data corruption.]

Technique: • [Invoke each database access method and process, seeding each with
 valid and invalid data or requests for data.

• Inspect the database to ensure the data has been populated as
 intended, all database events occurred properly, or review the
 returned data to ensure that the correct data was retrieved for the
 correct reasons]

Completion Criteria: [All database access methods and processes function as designed and
without any data corruption.]

Special Considerations: • [Testing may require a DBMS development environment or drivers to
 enter or modify data directly in the databases.

• Processes should be invoked manually.

• Small or minimally sized databases (limited number of records) should
 be used to increase the visibility of any non-acceptable events.]

3.1.2 Function Testing
[Function testing of the target-of-test should focus on any requirements for test that can be traced directly to
use cases or business functions and business rules. The goals of these tests are to verify proper data
acceptance, processing, and retrieval, and the appropriate implementation of the business rules. This type of
testing is based upon black box techniques; that is verifying the application and its internal processes by
interacting with the application via the Graphical User Interface (GUI) and analyzing the output or results.
Identified below is an outline of the testing recommended for each application:]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 8

Test Objective: [Ensure proper target-of-test functionality, including navigation, data
entry, processing, and retrieval.]

Technique: [Execute each use case, use-case flow, or function, using valid and
invalid data, to verify the following:

• The expected results occur when valid data is used.

• The appropriate error or warning messages are displayed when
 invalid data is used.

• Each business rule is properly applied.]

Completion Criteria: • [All planned tests have been executed.

• All identified defects have been addressed.]

Special Considerations: [Identify or describe those items or issues (internal or external) that
impact the implementation and execution of function test]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 9

3.1.3 Business Cycle Testing
[Business Cycle Testing should emulate the activities performed on the <Project Name> over time. A period
should be identified, such as one year, and transactions and activities that would occur during a year’s period
should be executed. This includes all daily, weekly, and monthly cycles and, events that are date-sensitive,
such as ticklers.]

Test Objective [Ensure proper target-of-test and background processes function
according to required business models and schedules.]

Technique: [Testing will simulate several business cycles by performing the
following:

• The tests used for target-of-test’s function testing will be modified or
 enhanced to increase the number of times each function is executed to
 simulate several different users over a specified period.

• All time or date-sensitive functions will be executed using valid and
 invalid dates or time periods.

• All functions that occur on a periodic schedule will be executed or
 launched at the appropriate time.

• Testing will include using valid and invalid data to verify the
 following:

• The expected results occur when valid data is used.

• The appropriate error or warning messages are displayed when
 invalid data is used.

• Each business rule is properly applied.

Completion Criteria: • [All planned tests have been executed.

• All identified defects have been addressed.}

Special Considerations: • [System dates and events may require special support activities

• Business model is required to identify appropriate test requirements
 and procedures.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 10

3.1.4 User Interface Testing
[User Interface (UI) testing verifies a user’s interaction with the software. The goal of UI testing is to ensure
that the User Interface provides the user with the appropriate access and navigation through the functions of
the target-of-test. In addition, UI testing ensures that the objects within the UI function as expected and
conform to corporate or industry standards.]

Test Objective: [Verify the following:

• Navigation through the target-of-test properly reflects business
 functions and requirements, including window-to-window, field-to-
 field, and use of access methods (tab keys, mouse movements,
 accelerator keys)

• Window objects and characteristics, such as menus, size, position,
 state, and focus conform to standards.]

Technique: [Create or modify tests for each window to verify proper navigation and
object states for each application window and objects.]

Completion Criteria: [Each window successfully verified to remain consistent with benchmark
version or within acceptable standard]

Special Considerations: [Not all properties for custom and third party objects can be accessed.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 11

3.1.5 Performance Profiling
[Performance profiling is a performance test in which response times, transaction rates, and other time-
sensitive requirements are measured and evaluated. The goal of Performance Profiling is to verify
performance requirements have been achieved. Performance profiling is implemented and executed to profile
and tune a target-of-test's performance behaviors as a function of conditions such as workload or hardware
configurations.

Note: Transactions below refer to “logical business transactions”. These transactions are defined as specific
use cases that an actor of the system is expected to perform using the target-of-test, such as add or modify a
given contract.]

Test Objective: [Verify performance behaviors for designated transactions or business
functions under the following conditions:

• normal anticipated workload

• anticipated worst case workload]

Technique: • [Use Test Procedures developed for Function or Business Cycle
 Testing.

• Modify data files to increase the number of transactions or the scripts
 to increase the number of iterations each transaction occurs.

• Scripts should be run on one machine (best case to benchmark single
 user, single transaction) and be repeated with multiple clients (virtual
 or actual, see Special Considerations below).]

Completion Criteria: • [Single Transaction or single user: Successful completion of the test
 scripts without any failures and within the expected or required time
 allocation per transaction.]

• [Multiple transactions or multiple users: Successful completion of the
 test scripts without any failures and within acceptable time
 allocation.]

Special Considerations: [Comprehensive performance testing includes having a background
workload on the server.

There are several methods that can be used to perform this, including:

• “Drive transactions” directly to the server, usually in the form of
 Structured Query Language (SQL) calls.

• Create “virtual” user load to simulate many clients, usually several
 hundred. Remote Terminal Emulation tools are used to accomplish
 this load. This technique can also be used to load the network with
 “traffic”.

• Use multiple physical clients, each running test scripts to place a load
 on the system.

Performance testing should be performed on a dedicated machine or at a
dedicated time. This permits full control and accurate measurement.

The databases used for Performance Testing should be either actual size
or scaled equally.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 12

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 13

3.1.6 Load Testing
[Load testing is a performance test which subjects the target-of-test to varying workloads to measure and
evaluate the performance behaviors and ability of the target-of-test to continue to function properly under
these different workloads. The goal of load testing is to determine and ensure that the system functions
properly beyond the expected maximum workload. Additionally, load testing evaluates the performance
characteristics, such as response times, transaction rates, and other time sensitive issues).]

[Note: Transactions below refer to “logical business transactions”. These transactions are defined as
specific functions that an end user of the system is expected to perform using the application, such as add or
modify a given contract.]

Test Objective: [Verify performance behavior time for designated transactions or
business cases under varying workload conditions.]

Technique: • [Use tests developed for Function or Business Cycle Testing.

• Modify data files to increase the number of transactions or the tests to
 increase the number of times each transaction occurs.]

Completion Criteria: [Multiple transactions or multiple users: Successful completion of the
tests without any failures and within acceptable time allocation.]

Special Considerations: • [Load testing should be performed on a dedicated machine or at a
 dedicated time. This permits full control and accurate measurement.

• The databases used for load testing should be either actual size or
 scaled equally.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 14

3.1.7 Stress Testing
[Stress testing is a type of performance test implemented and executed to find errors due to low resources or
competition for resources. Low memory or disk space may reveal defects in the target-of-test that aren't
apparent under normal conditions. Other defects might result from competition for shared resources like
database locks or network bandwidth. Stress testing can also be used to identify the peak workload the target-
of-test can handle.]

[Note: References to transactions below refer to logical business transactions.]

Test Objective: [Verify that the target-of-test functions properly and without error under
the following stress conditions:

• little or no memory available on the server (RAM and DASD)

• maximum actual or physically capable number of clients connected or
 simulated

• multiple users performing the same transactions against the same data
 or accounts

• worst case transaction volume or mix (see Performance Testing
 above).

Notes: The goal of Stress Testing might also be stated as identify and
 document the conditions under which the system FAILS to
 continue functioning properly.

 Stress Testing of the client is described under section 3.1.11,
 Configuration Testing.]

Technique: • [Use tests developed for Performance Profiling or Load Testing.

• To test limited resources, tests should be run on a single machine, and
 RAM and DASD on server should be reduced or limited.

• For remaining stress tests, multiple clients should be used, either
 running the same tests or complementary tests to produce the worst
 case transaction volume or mix.

Completion Criteria: [All planned tests are executed and specified system limits are reached or
exceeded without the software failing or conditions under which system
failure occurs is outside of the specified conditions.]

Special Considerations: • [Stressing the network may require network tools to load the network
 with messages or packets.

• The DASD used for the system should temporarily be reduced to
 restrict the available space for the database to grow.

• Synchronization of the simultaneous clients accessing of the same
 records or data accounts.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 15

3.1.8 Volume Testing
[Volume Testing subjects the target-of-test to large amounts of data to determine if limits are reached that
cause the software to fail. Volume Testing also identifies the continuous maximum load or volume the target-
of-test can handle for a given period. For example, if the target-of-test is processing a set of database records
to generate a report, a Volume Test would use a large test database and check that the software behaved
normally and produced the correct report.]

Test Objective: [Verify that the target-of-test successfully functions under the following
high volume scenarios:

• Maximum (actual or physically- capable) number of clients connected,
 or simulated, all performing the same, worst case (performance)
 business function for an extended period.

• Maximum database size has been reached (actual or scaled) and
 multiple queries or report transactions are executed simultaneously.]

Technique: • [Use tests developed for Performance Profiling or Load Testing.

• Multiple clients should be used, either running the same tests or
 complementary tests to produce the worst case transaction volume or
 mix (see Stress Testing above) for an extended period.

• Maximum database size is created (actual, scaled, or filled with
 representative data) and multiple clients used to run queries and
 report transactions simultaneously for extended periods.]

Completion Criteria: • [All planned tests have been executed and specified system limits are
 reached or exceeded without the software or software failing.]

Special Considerations: [What period of time would be considered an acceptable time for high
volume conditions, as noted above?]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 16

3.1.9 Security and Access Control Testing
[Security and Access Control Testing focus on two key areas of security:

• Application-level security, including access to the Data or Business Functions

• System-level Security, including logging into or remote access to the system.

Application-level security ensures that, based upon the desired security, actors are restricted to specific
functions or use cases, or are limited in the data that is available to them. For example, everyone may be
permitted to enter data and create new accounts, but only managers can delete them. If there is security at the
data level, testing ensures that” user type one” can see all customer information, including financial data,
however,” user two” only sees the demographic data for the same client.

System-level security ensures that only those users granted access to the system are capable of accessing the
applications and only through the appropriate gateways.]

Test Objective: • Application-level Security: [Verify that an actor can access only
those functions or data for which their user type is provided
permissions.]

• System-level Security: Verify that only those actors with access
to the system and applications are permitted to access them.]

Technique: • Application-level Security: [Identify and list each user type and
the functions or data each type has permissions for.]

• [Create tests for each user type and verify each permission
by creating transactions specific to each user type.]

• Modify user type and re-run tests for same users. In each
case, verify those additional functions or data are correctly
available or denied.

• System-level Access: [See Special Considerations below]

Completion Criteria: [For each known actor type the appropriate function or data are
available, and all transactions function as expected and run in
prior Application Function tests.]

Special Considerations: [Access to the system must be reviewed or discussed with the
appropriate network or systems administrator. This testing may
not be required as it may be a function of network or systems
administration.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 17

3.1.10 Failover and Recovery Testing
[Failover and RecoveryTesting ensures that the target-of-test can successfully failover and recover from a
variety of hardware, software or network malfunctions with undue loss of data or data integrity.

Failover testing ensures that, for those systems that must be kept running, when a failover condition occurs,
the alternate or backup systems properly “take over” for the failed system without loss of data or transactions.

Recovery testing is an antagonistic test process in which the application or system is exposed to extreme
conditions, or simulated conditions, to cause a failure, such as device Input/Output (I/O) failures or invalid
database pointers and keys. Recovery processes are invoked and the application or system is monitored and
inspected to verify proper application, or system, and data recovery has been achieved.]

Test Objective: [Verify that recovery processes (manual or automated) properly
restore the database, applications, and system to a desired,
known, state. The following types of conditions are to be
included in the testing:

• power interruption to the client

• power interruption to the server

• communication interruption via network servers

• interruption, communication, or power loss to DASD and or
 DASD controllers

• incomplete cycles (data filter processes interrupted, data
 synchronization processes interrupted).

• invalid database pointer or keys

• invalid or corrupted data element in database]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 18

Technique: [Tests created for Function and Business Cycle testing should be
used to create a series of transactions. Once the desired starting
test point is reached, the following actions should be performed,
or simulated, individually:

• Power interruption to the client: power the PC down.

• Power interruption to the server: simulate or initiate power
 down procedures for the server.

• Interruption via network servers: simulate or initiate
 communication loss with the network (physically disconnect
 communication wires or power down network servers or
 routers.

• Interruption, communication, or power loss to DASD and
 DASD controllers: simulate or physically eliminate
 communication with one or more DASD controllers or
 devices.

Once the above conditions or simulated conditions are achieved,
additional transactions should be executed and upon reaching
this second test point state, recovery procedures should be
invoked.

Testing for incomplete cycles utilizes the same technique as
described above except that the database processes themselves
should be aborted or prematurely terminated.

Testing for the following conditions requires that a known
database state be achieved. Several database fields, pointers,
and keys should be corrupted manually and directly within the
database (via database tools). Additional transactions should be
executed using the tests from Application Function and Business
Cycle Testing and full cycles executed.]

Completion Criteria: [In all cases above, the application, database, and system
should, upon completion of recovery procedures, return to a
known, desirable state. This state includes data corruption
limited to the known corrupted fields, pointers or keys, and
reports indicating the processes or transactions that were not
completed due to interruptions.]

Special Considerations: • [Recovery testing is highly intrusive. Procedures to
 disconnect cabling (simulating power or communication loss)
 may not be desirable or feasible. Alternative methods, such
 as diagnostic software tools may be required.

• Resources from the Systems (or Computer Operations),
 Database, and Networking groups are required.

• These tests should be run after hours or on an isolated
 machine.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 19

3.1.11 Configuration Testing
[Configuration testing verifies the operation of the target-of-test on different software and hardware
configurations. In most production environments, the particular hardware specifications for the client
workstations, network connections and database servers vary. Client workstations may have different
software loaded⎯for example, applications, drivers, etc.⎯and at any one time, many different combinations
may be active using different resources.]

Test Objective: [Verify that the target-of-test functions properly on the required
hardware and software configurations.]

Technique: • [Use Function Test scripts.

• Open and close various non-target-of-test related software,
 such as the Microsoft applications, Excel and Word, either as
 part of the test or prior to the start of the test.

• Execute selected transactions to simulate actor’s interacting
 with the target-of-test and the non-target-of-test software.

• Repeat the above process, minimizing the available
 conventional memory on the client workstation.]

Completion Criteria: [For each combination of the target-of-test and non-target-of-
test software, all transactions are successfully completed without
failure.]

Special Considerations: • [What non-target-of-test software is needed, is available, and
 is accessible on the desktop?

• What applications are typically used?

• What data are the applications running; for example, a large
 spreadsheet opened in Excel or a 100- page document in
 Word?

• The entire systems, netware, network servers, databases, etc.
 should also be documented as part of this test.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 20

3.1.12 Installation Testing
[Installation testing has two purposes. The first is to insure that the software can be installed under different
conditions⎯such as a new installation, an upgrade, and a complete or custom installation⎯under normal and
abnormal conditions. Abnormal conditions include insufficient disk space, lack of privilege to create
directories, etc. The second purpose is to verify that, once installed, the software operates correctly. This
usually means running a number of the tests that were developed for Function Testing.]

Test Objective: Verify that the target-of-test properly installs onto each required
hardware configuration under the following conditions:

• new installation, a new machine, never installed previously
 with <Project Name>

• update, machine previously installed <Project Name>, same
 version

• update, machine previously installed <Project Name>, older
 version

Technique: • [Manually or develop automated scripts, to validate the
 condition of the target machine⎯ new - <Project Name>
 never installed; <Project Name> same version or older
 version already installed).

• Launch or perform installation.

• Using a predetermined sub-set of function test scripts, run the
 transactions.]

Completion Criteria: <Project Name> transactions execute successfully without
failure.

Special Considerations: [What <Project Name> transactions should be selected to
comprise a confidence test that <Project Name> application has
been successfully installed and no major software components
are missing?]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 21

3.2 Tools
The following tools will be employed for this project:

[Note: Delete or add items as appropriate.]

 Tool Vendor/In-house Version

Test Management

Defect Tracking

ASQ Tool for functional testing

ASQ Tool for performance testing

Test Coverage Monitor or Profiler

Project Management

DBMS tools

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 22

4. Resources
[This section presents the recommended resources for the <Project Name> project, their main
responsibilities, and their knowledge or skill set.]

4.1 Workers
This table shows the staffing assumptions for the project.

[NOTE: Delete or add items as appropriate.]

Human Resources

Worker Minimum Resources
Recommended

(number of full-time workers
allocated)

Specific Responsibilities or Comments

Test Manager,

Test Project Manager

 Provides management oversight.

Responsibilities:

• provide technical direction

• acquire appropriate resources

• provide management reporting

Test Designer

 Identifies, prioritizes, and implements test cases.

Responsibilities:

• generate test plan

• generate test model

• evaluate effectiveness of test effort

Tester Executes the tests.

Responsibilities:

• execute tests

• log results

• recover from errors

• document change requests

Test System Administrator Ensures test environment and assets are
managed and maintained.

Responsibilities:

• administer test management system

• install and manage worker access to test
systems

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 23

Database Administratator,
Database Manager

 Ensures test data (database) environment and
assets are managed and maintained.

Responsibilities:

• administer test data (database)

Designer Identifies and defines the operations, attributes,
and associations of the test classes.

Responsibilities:

• identifies and defines the test class(es)

• identifies and defines the test packages

Implementer Implements and unit tests the test classes and
test packages.

Responsibilities:

• creates the test classes and packages
implemented in the test model

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 24

4.2 System
The following table sets forth the system resources for the testing project.

[The specific elements of the test system are not fully known at this time. It is recommended that the system
simulate the production environment, scaling down the accesses and database sizes if and where appropriate.]

[Note: Delete or add items as appropriate.]

System Resources

Resource Name / Type

Database Server

—Network or Subnet TBD

—Server Name TBD

—Database Name TBD

Client Test PC's

—Include special configuration requirements TBD

Test Repository

—Network or Subnet TBD

—Server Name TBD

Test Development PC's TBD

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 25

5. Project Milestones
[Testing of <Project Name> should incorporate test activities for each of the test efforts identified in the
previous sections. Separate project milestones should be identified to communicate project status
accomplishments.]

Milestone Task Effort Start Date End Date

Plan Test

Design Test

Implement Test

Execute Test

Evaluate Test

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 26

6. Deliverables
[In this section list the various documents, tools, and reports that will be created, by whom, delivered to who,
and when delivered.]

6.1 Test Model
[This section identifies the reports that will be created and distributed from the test model. These artifacts in
the test model should be created or referenced in the ASQ tools.]

6.2 Test Logs
[Describe the method and tools used to record and report on the test results and testing status.]

6.3 Defect Reports
[In this section identify the method and tools used to record, track, and report on test incidents and their
status.]

<Project Name> Version: <1.0>
Test Plan Date: <dd/mmm/yy>
<document identifier>

SDLC Internal Use Only ©SDLC, 2000 Page 27

7. Appendix A: Project Tasks
Below are the test related tasks:

• Plan Test

- identify requirements for test

- assess risk

- develop test strategy

- identify test resources

- create schedule

- generate Test Plan

• Design Test

- prepare workload analysis

- identify and describe test cases

- identify and structure test procedures

 - review and assess test coverage

• Implement Test

- record or program test scripts

- identify test-specific functionality in the Design and Implementation Model

- establish external data sets

• Execute Test

 - execute Test procedures

 - evaluate execution of Test

 - recover from halted Test

 - verify the results

 - investigate unexpected results

 - log defects

• Evaluate Test

 - evaluate Test-case coverage

 - evaluate code coverage

 - analyze defects

 - determine if Test Completion Criteria and Success Criteria have been achieved

	1. Introduction
	1.1 Purpose
	1.2 Background
	1.3 Scope
	1.4 Project Identification

	2. Requirements for Test
	3. Test Strategy
	3.1 Testing Types
	3.1.1 Data and Database Integrity Testing
	3.1.2 Function Testing
	3.1.3 Business Cycle Testing
	3.1.4 User Interface Testing
	3.1.5 Performance Profiling
	3.1.6 Load Testing
	3.1.7 Stress Testing
	3.1.8 Volume Testing
	3.1.9 Security and Access Control Testing
	3.1.10 Failover and Recovery Testing
	3.1.11 Configuration Testing
	3.1.12 Installation Testing

	3.2 Tools

	4. Resources
	4.1 Workers
	4.2 System

	5. Project Milestones
	6. Deliverables
	6.1 Test Model
	6.2 Test Logs
	6.3 Defect Reports

	7. Appendix A: Project Tasks

